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Abstract. Novel dimerized antiferromagnetic (homogeneous spin–Peierls) and inhomogeneous-
lattice antiferromagnetic (inhomogeneous spin–Peierls) ground states are found in a one-
dimensional (1-D) and a two-dimensional (2-D) electron–lattice periodic Anderson model,
respectively. Coexistence and mutual enhancement of the Peierls lattice distortion and the anti-
ferromagnetic long-range-order are emphasized. The stoichiometric (half-filling) phase diagrams
for the 1-D and 2-D cases are strongly dependent on the hybridization and electron–lattice coupling.
For non-stoichiometric fillings, local lattice distortion (coupled spin–charge–lattice small-polaron)
states are found: these are discussed in the context of, for example, Ce-based, heavy-fermion
systems. Relations to volume collapse phenomena and inorganic spin–Peierls systems, and the
similarity of the phase diagrams to those of organic superconductors are also described.

The periodic Anderson model (PAM) has attracted intensive theoretical study as a minimal
model for describing many phenomena observed in rare-earth and actinide materials [1–5],
especially heavy-fermion systems such as Ce and U compounds. The competition between
RKKY and Kondo interactions, volume collapse phenomena under pressure [6–10], the spin
(charge) gap, and the rich broken-symmetry phases in these materials are widely studied within
the framework of the PAM. However, lattice effects in these systems have also been implicated
in several experiments [11, 12]. The pressure-induced volume collapse and the doping with
other rare-earth elements, which leads to a phase transition between antiferromagnetic and
spin-liquid states, are each accompanied by a unit-cell volume change. There are also strong
magnetoelastic effects, especially in superconducting heavy-fermion compounds. These
observations strongly indicate the importance of lattice effects and electron–lattice coupling.
Recently, evidence for a local lattice distortion has been found from neutron scattering in Ce-
based compounds, which may suggest the existence of a polaron [13]. This is also consistent
with extensive Fermi surface (e.g., photoemission [14]) evidence for flat-band regions.

To approach these qualitatively distinct effects, we here extend the PAM to include
electron–lattice coupling. Explicitly, we incorporate modification of the hopping in the cond-
uction band induced by lattice distortion. We find that, in addition to the RKKY and Kondo
interactions [5], a Peierls instability strongly competes, and the competition among these three
mechanisms leads to new novel broken-symmetry ground states. The phase diagrams that we
find for both 1-D and 2-D cases suggest that feedback effects induced by the three coupled
mechanisms can be exploited to understand several classes of complex electronic materials
including spin–Peierls materials [15–17] and organic charge-transfer compounds [18, 19].
Furthermore, upon doping, we find a small-polaron state, especially near phase boundaries,
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again emphasizing the fundamental importance of the electron–lattice (e–l) coupling in these
materials.

Our electron–lattice PAM (e–l PAM) Hamiltonian on a square lattice (the 1-D case can
be trivially extracted from the 2-D model) is
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Heret is the hopping between the neighbouring sites in the conduction d band,Uf is the on-site
Coulomb interaction in the insulating f band,V is the hybridization between d and f bands,εd
andεf are the site energy levels of the d and f bands.α is an electron–lattice coupling constant
in the d band,ux(y) is the lattice displacement,K is the spring constant, andPl is the ionic
momentum. We use the following representative parameters:t = 1, Uf = 4t, K = 20t Å−2,
and consider the symmetric case (εd = εf = 0). To accommodate the inhomogeneous and
non-linear features anticipated, we use inhomogeneous self-consistent-field methods for the
e–l PAM models [20]; this is a qualitative improvement on homogeneous or similar periodic
methods. To determine the character of the ground state and phase diagrams, we measure the
magnetizationmfi and lattice distortionux(y)i at every site within this inhomogeneous approach.
We emphasize the importance of retaining the full two-band (d, f ) model to obtain the new
phases described below: self-doping between the bands is essential in determining effective
intersite and interorbital coupling (cf. binary-atom unit-cell cases [20]). If the ground state is
homogeneous, it is also naturally obtained in our approach. Of course, the mean-field state
artificially breaks symmetries and the ordered states are more advantageous within this mean-
field approximation; especially in 1-D case, also, our model has a band of acoustic modes at
zero energy, which enhances the tendency of the model towards symmetry breaking, but the
unrestricted (inhomogeneous) implementation is a qualitative improvement on homogeneous
mean-field or similar periodic methods. For the 2-D e–l PAM, our results are qualitatively
the same as the quantum Monte Carlo results along theα = 0 line [5]. When the electron–
lattice interaction is becoming more important, we also expect that the inhomogeneous self-
consistent-field method will capture the essential physics in the 1-D case [20]. Periodic
boundary conditions are used.

In both the 1-D and 2-D cases, we find the coexistence of a long-range antiferromagnetic
(AF) phase and a Peierls phase (‘spin–Peierls’). Importantly, they are found to enhance each
other (i.e. there is a positive feedback), instead of being destructive as in recently found
inorganic spin–Peierls materials such as CuGeO3 [21,22]. Depending on the hybridizationV
between the d and f bands and the e–l coupling constantα, various broken-symmetry phases
and phase transitions are found. Upon doping away from stoichiometric filling, we also find
local (polaronic) distortion states, especially near the phase boundaries, which suggests that
the competition among the Peierls instability and the Kondo and RKKY interactions is vital
for understanding the rich phenomena exhibited by rare-earth transition metal and related
materials.

The 1-D phase diagram is shown in figure 1. Four phases are designated: spin–Peierls-I
(|mfi | 6= 0 and 〈mfi mfj 〉 6= 0 at large|i − j |, ui = −ui+1 6= 0; dimerization and AF
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Figure 1. The 1-D phase diagram. Spin–Peierls-I and spin–Peierls-II represent the homogeneous
and inhomogeneous spin–Peierls phases, respectively. AF represents the antiferromagnetic phase
and SL represents the spin-liquid phase.
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Figure 2. The variation of the magnetic moment with electron–lattice couplingα. HereV = 2.1.

long-range order coexist); spin–Peierls-II (|mfi | 6= 0 and 〈mfi mfj 〉 6= 0 at large|i − j |,
ui 6= 0, inhomogeneous-lattice distortion and AF long-range order coexist); antiferromagnetic
(|mfi | 6= 0 and〈mfi mfj 〉 6= 0 at large|i−j |,ui = 0); and spin-liquid (|mfi | = 0,ui = 0). When
the e–l coupling has moderate strength, satisfying the conditionα δu < Uf , model (1) yields
the homogeneous spin–Peierls ground state. Whenα δu > Uf , the inhomogeneous spin–
Peierls-II ground state is found. It can be concluded from figure 1 that lattice distortion and
AF long-range order reinforce each other. As we clearly see from figures 2 and 3, with increase
of the e–l coupling, there is a sharp increase ofm

f

i (figure 2) and the spin–spin correlation
(figure 3). This represents a phase transition from a spin-liquid phase to a spin–Peierls phase.
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Figure 3. The spin–spin correlation〈mfi mfj 〉 in a 16-site chain, demonstrating the dependence of
the long-range AF order on the e–l couplingα. HereV = 1.9.
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Figure 4. The dimerized spin–Peierls phase for a 16-site chain.

The corresponding dimerized lattice distortion for a 16-site chain is shown in figure 4.
A representative material value ofα is 4.0t Å−1. The effect of pressure is equivalent to

changing the hybridizationV between the d and f orbitals, and the e–l coupling is weakly
dependent on temperature. We therefore suggest that phase transitions from spin–Peierls to
AF and finally to spin-liquid phases should be observed with increasing pressure.

We have studied the 2-D case in detail for 4× 4, 6× 6, and 8× 8 unit-cell square
lattices. The phase diagram is shown in figure 5. (The 6× 6 and 8× 8 findings are almost
quantitatively the same, so we believe that figure 5 essentially represents the large-system-
size phase diagram). The general similarity of the phase diagrams in the 1-D and 2-D cases
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Figure 5. The phase diagram in 2-D. Note the long-period spin–Peierls ground state found in the
small-V region. CDW denotes a charge-density wave.

is evident. In 2-D, the inhomogeneous spin–Peierls phase is found to be the ground state
when the hybridizationV and the e–l couplingα satisfy certain conditions. Unlike in the
1-D case, lattice inhomogeneity appears throughout the spin–Peierls phase. In addition to the
spin–Peierls phase, the AF phase, and the spin-liquid phase, there is a new charge-density-
wave-like (CDW-like) phase present in 2-D, defined by|mfi | = 0 andui 6= 0. This phase is a
result of the competition between the e–l coupling and the hybridization for sufficiently strong
e–l coupling. Again, in real materials with reasonable e–l coupling, phase transitions between
spin–Peierls, AF, and spin-liquid phases should be observed with pressure.

We see that in both the 1-D and 2-D cases in our e–l PAM model, the striking common
feature is that a new spin–Peierls ground state is found, and that there is coexistence of
the Peierls distortion and AF long-range order, with positive feedback between them. The
inhomogeneity of the spin–Peierls phase arises from contributions of many phonon modes,
in addition to the (π , π ), (π , 0), (0,π ) modes, which drive dimerization. Since the phonon
spectrum has strong dispersion, in the 2-D case the inhomogeneous spin–Peierls ground state
is always found, because the contributions of other phonon modes further lower the system’s
energy. The 2-D lattice structure of the inhomogeneous spin–Peierls state is illustrated in
figure 6 for a 4× 4 system.

For low doping away from stoichiometric filling, local distortions in the form of small-
polaron states are found. We find that such polaron states are most easily formed near the
phase boundary between the spin–Peierls phase and the AF phase, especially near the multi-
critical point separating the four phases (see figure 5). Specifically, at half-filling and in
the pure AF phase but near the phase boundary, when we dope the system, a local spin–
Peierls phase distortion (a composite spin–charge–lattice small polaron) is induced in the AF
background. With larger doping this is a mechanism for melting and a global phase transition.
This sensitivity near phase boundaries may be related to the chemical pressure phenomena,
observed in many experiments [11,12]. Local distortions in a Ce-based heavy-fermion material
have also recently been suggested experimentally [13]. To understand the complex rare-earth
materials, and the experimentally observed phenomena, including all the spin, charge and
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Figure 6. Typical lattice structure of the 2-D inhomogeneous spin–Peierls phase, withα = 7.0
andV = 1.9

lattice effects, we believe that including cooperative spin–charge–lattice couplings and the
intrinsic inhomogeneities that they drive is essential. An electron–polaron state in an AF
background is illustrated in figure 7.
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Figure 7. Local lattice distortion induced by doping away from half-filling. Hereα = 4.0 and
V = 1.6. This polaronic lattice distortion is accompanied by localization of charge and spin, and
local variation of (d, f ) orbital occupation, as will be described in detail elsewhere.

The rich phase diagrams found in the e–l PAM are suggestive for several classes of
complex electronic materials that exhibit interesting phenomena under pressure, temperature,
and doping. For example, in organic conductors (or superconductors), the phase transition
SP→ AF→ SDW→ SL (or superconductor) with the variation of external pressure at low
temperatures [23] is very similar to the phase transition of our e–l PAM model with variation of
the hybridizationV and appropriate e–l coupling strength. As we have noted, the application
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of pressure increases the exchange between the d and f orbitals, i.e., increasesV . Also, the
inorganic spin–Peierls material CuGeO3 shows similarities with our model’s properties. When
the on-site Coulomb interaction on the f orbital is very large, we can use a spin–Peierls-like
model [17] to simulate our e–l PAM model. Here the AF coupling arises from the on-site f
orbital electron–electron correlation, while the lattice-modified AF coupling originates from
the lattice distortion between the neighbouring d orbitals (since the effective AF coupling
between the neighbouring f orbitals depends on the hopping between the d orbitals (cf. [20])).
Thus in this limit, the two-band e–l PAM model can be approximated with a one-band spin–
Peierls-like model, which is widely exploited for both organic and inorganic spin–Peierls
materials. We emphasize that we only point here to qualitative similarities between the two
models. As we have shown, coexistence of the Peierls lattice distortion and the AF long-range
order reinforce each other in the e–l PAM. This is significantly different from the case for
the original spin–Peierls model, where these two phases are viewed as exclusive; so when
doping, the dopant disorder must be included to account for the coexistence of Peierls and
AF long-range order [22,24]. The spin–Peierls ground state that we have identified in our e–l
PAM model is an intrinsic feature of the two-band spin–charge–lattice coupled system.

The local distortion suggested in recent experiments on the Ce-based heavy-fermion
materials [13] strongly supports the importance of the e–l interaction in these materials.
Other features in our e–l PAM model concerning the magnetization, the spin–spin correlation,
thermodynamics, etc, are also under investigation and will be given elsewhere, together with
results for other lattice symmetries and 3-D.

In summary, we have found new homogeneous and inhomogeneous spin–Peierls ground
states in an electron–lattice periodic Anderson model for both 1-D and 2-D square-lattice
systems. The importance of the competition among the Peierls instability and the RKKY
and Kondo interactions is evident. Lattice effects have largely been neglected in previous
studies, although many experiments have strongly suggested coupled spin–charge–lattice
signatures in the rare-earth materials: heavy-fermion materials exhibiting a volume collapse,
and chemical pressure (doping) effects accompanied by unit-cell changes or isostructural
phase transitions, especially in superconducting compounds. The small-polaron state found
upon doping away from stoichiometry in our model is also in agreement with recent neutron
scattering experiments [13] on the Ce materials, as well as Fermi surface structure [14]. The
new ground states that we have found and the mechanism of positive feedback between the
Peierls order and AF long-range order can help in the understanding of a series of materials,
including inorganic spin–Peierls materials, organic conductors, and MX chain systems [20],
in addition to the rare-earth compounds. In all cases, both the local polaronic distortions with
doping, and the structurally inhomogeneous spin–Peierls phase will act as sources of ‘intrinsic
disorder’ and compete with extrinsic disorder effects. This leads us to anticipate widespread
evidence for metastable phases and glassy (multi-timescale) dynamics.
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